
Open Sesame…
…uh, Open Saskatchewan

Christopher F. Burns, Sr.
Buffalo, NY

cburns@gemko.com
cburns@inuendo.us

© 2017 GEMKO Information Group, LLC

Why are we here?...
• To help rescue the IBM i platform from three enemies:

– Third party vendors who helped build up the platform with their
offerings early on, but also helped bring it down with technical
stagnancy and unfriendly licensing practices.

– “Lifer” professionals who helped promote the platform with their
creativity early on, but also helped bring it down with complacency
and inflexibility.

– IBM marketing, which can’t/won’t get out of its own way.

• To attempt to turn the tide from IBM i as a consumer of
open source software to a producer instead.

• To introduce lifers to a new paradigm of software
development.

RUNDOWN

Y ASK Y

COORS LIGHT

MOD SQUAD

BY THE RULES

ALGORE

THAT WAS THEN

THIS IS NOW

KISSIN' COUSIN

CULTURE

WITH ONE “N”

MORE...

On tap..

• A look at two open source projects born
on IBM i and driven by native tooling.
– The Report Mods Framework (RMF).
– Inuendo – Data’s New Direction.

• The trouble with opening up.
– Challenges in preparing your project for

open source communities.

RUNDOWN

Y ASK Y

COORS LIGHT

MOD SQUAD

BY THE RULES

ALGORE

THAT WAS THEN

THIS IS NOW

KISSIN' COUSIN

CULTURE

WITH ONE “N”

MORE...

Open Sesame…
…uh, Open Saskatchewan

The Report Mods
Framework (RMF)

The back story...
• GEMKO built a solution model to help customers with

overcustomized 3rd party software get out of “mods jail”.
– Once known as Mods Externalization, now Decustomization.
– Repeatable, proven process that includes education

• Spooled file mods are among the most common.
– Hard coded output queues.

• C/L source butchered.

– Content additions or relocations.
• RPG source butchered.

– Conversion to other media types (CSV, PDF, etc.)
• Multiple source types butchered.

– Users often get emotional when it comes to their printed reports.

• A hands off alternative was needed.
– Leave the 3rd party source alone.

RUNDOWN

Y ASK Y

COORS LIGHT

MOD SQUAD

BY THE RULES

ALGORE

THAT WAS THEN

THIS IS NOW

KISSIN' COUSIN

CULTURE

WITH ONE “N”

MORE...

RMF Workflow

The above is performed by
a NEP called RPTMOD.

RUNDOWN

Y ASK Y

COORS LIGHT

MOD SQUAD

BY THE RULES..

ALGORE

THAT WAS THEN

THIS IS NOW

KISSIN' COUSIN

CULTURE

WITH ONE “N”

MORE...

Wait a minute! Modify content?…....

• Yes, modify content.
• Depending on the rule, RPTMOD loads the entire

spooled file into a memory grid (2 dimension array).
– RPG size limitations cap it off at 1500 pages by 66 lines by 132

characters per line.
– Pointer to array passed from RPTMOD to handler program.

• Access “dead” lines not visible via DSPSPLF.
• Seek out patterns to find placement points.
• Add or delete character strings, or move strings using

simple RPG functions like %SUBST or %REPLACE.
• RPTMOD writes grid back out to *SPLF or PDF.
• Sample available on the download page.

RUNDOWN

Y ASK Y

COORS LIGHT

MOD SQUAD

BY THE RULES.

ALGORE

THAT WAS THEN

THIS IS NOW

KISSIN' COUSIN

CULTURE

WITH ONE “N”

MORE...

The RMF rules table…...

• Identifies spooled files requiring intervention.
– Qualifiers such as file name, program, queue, etc.
– Kill switch to disable the rule instantly.

• Specifies the format of the finished product.
– Spooled file, PDF, FTP stream
– Also referred to as Transformation Type
– HTML option not in open source, but has been used in the past.

• Provides target attributes based on type. Examples:
– Output queue or form type for a spooled file.
– IFS path or e-mail address for a PDF file.

• “Buyer” beware – camps on to the native Mail Server Framework.

– IP address for a direct FTP to a capable printer.

• Layout in downloadable user guide.
• Installation guide.
• Quick demo.

RUNDOWN

Y ASK Y

COORS LIGHT

MOD SQUAD

BY THE RULES

ALGORE

THAT WAS THEN

THIS IS NOW

KISSIN' COUSIN

CULTURE

WITH ONE “N”

MORE...

Open Sesame…
…uh, Open Saskatchewan

Inuendo: Data’s
New Direction

An inconvenient truth…..
• Nearly a third of the code in your application programs

was written to leverage and compensate for weak data.
– Well-designed data can do most of that work for you.

• Another 10-15% is remediation of weak data.
– Resynchronizing buckets with detail.
– Cleansing of orphaned records.

• Another 25% or more is cloning and patching.
• Only a small fraction of your professional expertise goes

toward developing unique, strategic business rules.
– Mull over that for a while.

• Plus, consider our legacy versus our current reality…

RUNDOWN

Y ASK Y

COORS LIGHT

MOD SQUAD

BY THE RULES

ALGORE

THAT WAS THEN

THIS IS NOW

KISSIN' COUSIN

CULTURE

WITH ONE “N”

MORE...

Our legacy

Gobs of data
on a screen.

RUNDOWN

Y ASK Y

COORS LIGHT

MOD SQUAD

BY THE RULES

ALGORE

THAT WAS THEN

THIS IS NOW

KISSIN' COUSIN

CULTURE

WITH ONE “N”

MORE...

Our new reality

Tiny bits of data on a screen.

RUNDOWN

Y ASK Y

COORS LIGHT

MOD SQUAD

BY THE RULES

ALGORE

THAT WAS THEN

THIS IS NOW

KISSIN' COUSIN

CULTURE

WITH ONE “N”

MORE...

The back story..
• GEMKO built a solution model for modernizing home

grown back office applications, a bit at a time.
– Re-engineer select data objects using modern best practice.

• Normalization, identity columns, constraints, data types, etc.
• Create Data Servers to replace all Record Level Access (RLA).

– Replicate in real time using triggers.
• Little or no disruption to the live legacy environment.

– Retrofit applications
• Read-only programs first, one right after the other.
• Update-capable programs next, implemented as a group.

– Retire legacy data objects.
– Review our performance, shake out any flaws.
– Rinse & repeat with another functional area or file.
– Included SQL & RPG education.
– Cousin of De-Customization.

• Built a playbook for each cycle.
– Utilize customer tech staff.

RUNDOWN

Y ASK Y

COORS LIGHT

MOD SQUAD

BY THE RULES

ALGORE

THAT WAS THEN

THIS IS NOW

KISSIN' COUSIN

CULTURE

WITH ONE “N”

MORE...

A culture, not a project

Tell me what’s missing.

RUNDOWN

Y ASK Y

COORS LIGHT

MOD SQUAD

BY THE RULES

ALGORE

THAT WAS THEN

THIS IS NOW

KISSIN' COUSIN

CULTURE.

WITH ONE “N”

MORE...

The not so back story…..
• Had good success, but:
• Each deployment was a complete custom job.

– Standard methodology but no standard deliverable.

• Each functional area required its own structure.
– Limited ability to leverage ROI between cycles.

• Needed a model that could be used across the entire
enterprise, and at any customer.

– Something that could endure the test of time.
– Something more friendly to young'uns.

• CFB researched & developed outside of GEMKO.
– White boarded in early 2010, developed over next two years.
– R & D continues today as an open source project.

RUNDOWN

Y ASK Y

COORS LIGHT

MOD SQUAD

BY THE RULES

ALGORE

THAT WAS THEN

THIS IS NOW

KISSIN' COUSIN

CULTURE

WITH ONE “N”

MORE...

Data’s New Direction

RUNDOWN

Y ASK Y

COORS LIGHT

MOD SQUAD

BY THE RULES

ALGORE

THAT WAS THEN

THIS IS NOW

KISSIN' COUSIN

CULTURE

WITH ONE “N”..

MORE...

So just what in the world is it?...

• It’s the virtualization of data, down to the “piece of
information” level (POI for short).

• Comprised of three major components:
– Associative, chronological data model.
– API based abstraction layer to access the model.
– Your imagination to visualize relationships.

• And why call it that?
– It’s all about the data, so it begins and ends with I/O.
– It’s about implication, with an associative flavor.
– People associate that term with sex for some reason, and sex

sells, even though Inuendo is not for sale and is gender neutral.
– The abbreviated spelling shielded it from e-mail filters. Trevor

Perry nailed me on this one…repeatedly…as only he can.

RUNDOWN

Y ASK Y

COORS LIGHT

MOD SQUAD

BY THE RULES

ALGORE

THAT WAS THEN

THIS IS NOW

KISSIN' COUSIN

CULTURE

WITH ONE “N”.

MORE...

A data store for all to share

Inuendo

Systems
of

Insight

Systems
of

Engagement

Systems
Of

Record

Avoid all of the overlap
in LOB applications.

Unstructured data finds
structure easily.

Just the info they need,
just when they need it.

RUNDOWN

Y ASK Y

COORS LIGHT

MOD SQUAD

BY THE RULES

ALGORE

THAT WAS THEN

THIS IS NOW

KISSIN' COUSIN

CULTURE

WITH ONE “N”

MORE...

Principles of Inuendo.…..
• All business objects, regardless of size or significance are

treated equally. They are referred to as Entities.
• Entities are based on a class definition, comprised of

Properties. A property is one piece of info about the Entity.
– Similar to OO design, only described with data instead of code.
– Property values are organized by data type, one table per type.

• Every Entity has a common set of properties that help identify
and describe it. Referred to as metadata.

– Stored in a header table. One row for every Entity across the enterprise.
– Includes a unique identifier, class, legacy identifiers, creation stamps, etc.

• Every Entity is spawned from / subordinate to another.
– Referred to as the Parent. The Founder is at the top of the food chain.

• Links are a data type that holds the unique ID of an Entity.
– Provides a means to connect one Entity to another.

• Data is vertical.
– Hence there are no aggregates.

RUNDOWN

MR. FEENY

COVER GIRL

PROPS

HEAD CHEESE

SUBS

OOPS!

LAYER CAKE

ID THEFT

CREATIONISM

GETTIN' SOME

MORE...

Okay, so here’s the modelRUNDOWN

MR. FEENY

COVER GIRL

PROPS

HEAD CHEESE

SUBS

OOPS!

LAYER CAKE

ID THEFT

CREATIONISM

GETTIN' SOME

MORE...

No, HERE’s the model

ENTPROP
Defines
Classes

ENTHEAD
Defines
Entities

ENTDATE
Property Values

ENTDATX
Property Values

ENTFLAG
Property Values

ENTLINK
Property Values

ENTNOTE
Property Values

ENTNOTX
Property Values

ENTNUMB
Property Values

ENTNUMX
Property Values

Class

Entity ID Entity IDClass/Property

Entity ID

Entity ID

Based on data type.

Every value every property ever had, chronologically.

Your entire data set in 10 tables.

RUNDOWN

MR. FEENY

COVER GIRL

PROPS

HEAD CHEESE

SUBS

OOPS!

LAYER CAKE

ID THEFT

CREATIONISM

GETTIN' SOME

MORE...

Table ENTPROP – Entity Properties

Contains one row for each Class (to provide a description), plus one row for each Property defined
to each Class. GET and PUT functions use this table to verify Class and Property names prior to
performing any I/O operations.

Column Type Description
Class nickname The name of the class (business object type).
Property nickname The name of the Property. Blank if simply describing the Class.
DataType nickname The data type for this Property. This will correspond with the LEGACYA

value of a pre-installed entity of class DATATYPE.
Descriptor note Freeform description of the Property (or Class if the Property is blank).
Sequencer smallint The value used to specify the order in which properties for this Class are

presented by user interfaces.
PartnerClass nickname Optional. For a Class definition (Property is blank), specifies the required

class of the Parent ID when instantiating an Entity of that Class. For a
Property of type Link, specifies the required class for any value assigned to
that Property.

Primary key Class, Property, Sequencer

ENTPROP layout

OO programmers design classes with
source code. Inuendo does it with data.

RUNDOWN

MR. FEENY

COVER GIRL

PROPS

HEAD CHEESE

SUBS

OOPS!

LAYER CAKE

ID THEFT

CREATIONISM

GETTIN' SOME

MORE...

Class Property Data Type Descriptor Seq.

SALESREP Sales Representative

SALESREP CERTIFIED FLAG Achieved IBM Sales Certification 120

SALESREP COMMISSION NUMB Commission Percentage 140

SALESREP PERDIEM NUMB Per Diem Rate 160

SALESREP VEHICLE LINK Assigned Company Vehicle 180

Assumption:
• A VEHICLE class exists, with an ENTHEAD record for

every company vehicle.

ENTPROP examples

Table ENTHEAD – Entity Header

Contains one row for each Entity (instance of a Class). Once created, a row maybe updated but
not deleted. The row is comprised of identification and metadata.

Column Type Description
EntityID entityID Database wide unique identifier (auto generated).
ParentID entityID The parent entity from which this entity was spawned and is subordinate to.
Class nickname The class of the entity as defined in ENTPROP.
LegacyA note The alpha legacy (well known) identifier of the entity.
LegacyN legacyN The numeric legacy (well known) identifier of the entity.
Descriptor note Freeform general description of the entity.
Status flag Simple flag for enabling/disabling entities or tracking their progression

through a typical lifecycle.
CreateTime timestamp The system time stamp when the entity was created.
CreateJnam name IBM i job name which created the entity.
CreateUser user User ID which created the entity.
CreateJnum Job IBM i job number which created the entity.
CreateProg name IBM i program name which created the entity.

Primary key EntityID

ENTHEAD layout

A legend in the Tech Reference explains
the Type column.

RUNDOWN

MR. FEENY

COVER GIRL

PROPS

HEAD CHEESE

SUBS

OOPS!

LAYER CAKE

ID THEFT

CREATIONISM

GETTIN' SOME

MORE...

ENTHEAD examples
Entity

ID
Parent

ID
Class Legacy

Alpha
Legacy

Numeric
Descriptor Status

1 1 FOUNDER Database Founder

75 1 COMPANY 1 ABC Company

436 75 ADDRBOOK Our Little Black Book

2878 436 ADDRESS Accounts Receivable Office

7073 75 SALESREP 505 Jackson, Alex F. A

48562 75 VEHICLE 1F387R5…. Sales Fleet Minivan A

90395 75 GPS 9450249 A

Every business object is account for in ENTHEAD.
Indexes are provided on the Legacy identifiers and the
Descriptor to assist the API functions.

“FounderID” is a global variable with a value of 1.

Table ENTDATE – Entity Dates (all the others are the same except for the type of the Value column).

Contains one for each historical change in value made to each Property of type DATE for each Class.
The row contains time, user and program stamps for audit and time travel purposes.

Column Type Description
EntityID entityID Database wide unique identifier. Must exist in ENTHEAD.
Property nickname The associative name of the Property. Must be a valid Property nickname

for the Class of this EntityID.
ChangeTime timestamp The system time stamp when the value was assigned.
ChangeJnam name IBM i job name which assigned this value to the property.
ChangeUser user User ID which assigned this value to the property.
ChangeJnum job IBM i job number which assigned this value to the property.
ChangeProg name IBM i program name which assigned this value to the property.
Value date The value assigned to the property for this entity.

Primary key EntityID, Property, ChangeTime

Data type subtable layout

Basically, Inuendo is self-journaled, but
you may need to journal it if replicating
to a High Availability box.

RUNDOWN

MR. FEENY

COVER GIRL

PROPS

HEAD CHEESE

SUBS

OOPS!

LAYER CAKE

ID THEFT

CREATIONISM

GETTIN' SOME

MORE...

Entity ID Property Value Time Stamp User ID Program

7073 COMMISSION 5.25 2017-03-01 11:23:55 JOHNSONV SA250

7073 PERDIEM 25 2017-03-01 11:23:55 JOHNSONV SA250

7073 COMMISSION 5.5 2017-03-31 16:05:14 WILLIAMSC SA250

7073 PERDIEM 27.5 2017-03-31 16:05:14 WILLIAMSC SA250

The subtables record every change to every property for every entity, along with

information about the change. This can be a HUGE help when troubleshooting.

“But isn’t that a lot of data?”
-- Naysayers

“Hold my beer.”
-- DB2 for i

ENTNUMB examples

Oops! While we’re at it…...
• “Hey, you’re OOPing data!”

– Michael Szczepanik, GEMKO Information Group, 2010.

• A funny thing happened on the way to Inuendo:
• Inheritance.

– Entities automatically inherit non-conflicting properties of their ancestors for
GET operations, even though they’re not the same class.

• Encapsulation.
– Logic to traverse the database is contained in the data itself.
– Period delimited path of link property names can be used in GET functions

to perform multiple hops to a desired Entity or one of its properties.

• Polymorphism.
– Link properties of a given Class can be used to connect to Entities of

multiple classes that share common Property nicknames.

• The building blocks of Object Oriented Programming.
– Others do it with code. Inuendo does it with data. Just sayin’.
– Sorry about the tangent. On with the show.

RUNDOWN

MR. FEENY

COVER GIRL

PROPS

HEAD CHEESE

SUBS

OOPS!

LAYER CAKE

ID THEFT

CREATIONISM

GETTIN' SOME

MORE...

The API layer
• Identity resolution functions
• Entity creation functions
• Property subtable GET functions
• Metadata GET functions
• Property subtable PUT functions
• Metadata PUT functions
• Statistical/Analytics functions
• Stored Procedures:

– Entity snapshots
– Entity groups
– Audit trail history

• Virtual Methods (more OOP-age!)
• Self-defense mechanisms

RUNDOWN

MR. FEENY

COVER GIRL

PROPS

HEAD CHEESE

SUBS

OOPS!

LAYER CAKE

ID THEFT

CREATIONISM

GETTIN' SOME

MORE...

Identity resolution….
• The most important function, since we need to know

which Entity we’re working with.
• getEntityID(ParentID, Class, Legacy ID)

– Multiple RPG variants for alpha & numeric Legacy ID’s
– Overloaded SQL versions to handle either.
– Implies an Entity ID as a result, naturally.

• Examples:
– CompanyID = getEntityID(FounderID : ‘COMPANY’ : 1);
– SalesRepID = getEntityID(CompanyID : ‘SALESREP’ : 505);
– VehicleID = getEntityID(CompanyID : ‘VEHICLE’ : ‘1F387R5….’);

• Unsuccessful attempt implies a zero.

RUNDOWN

MR. FEENY

COVER GIRL

PROPS

HEAD CHEESE

SUBS

OOPS!

LAYER CAKE

ID THEFT

CREATIONISM

GETTIN' SOME

MORE...

Entity creation.…..
• Also important, because this is how we will build our data set.
• newEntity(ParentID, Class, Legacy ID, Descriptor)

– Multiple RPG variants for alpha & numeric Legacy ID’s.
– Overloaded SQL versions to handle either.
– Descriptor is optional but recommended.

• Examples:
– CompanyID = newEntity(FounderID : ‘COMPANY’ : 1 : ‘ABC Company’);
– SalesRepID = newEntity(CompanyID : ‘SALESREP’ : 505 : ‘Jackson, Alex’);
– VehicleID = newEntity(CompanyID : ‘VEHICLE’ : ‘1F387R5….’);

• If the ParentID/Class/LegacyID already exists, implies the
EntityID already on file.

• Violations of ENTPROP structures spawn an Error entity.
• Also dupEntity creates a new entity of the same Class with the

same current Property values and optionally new Legacy IDs.
• Ask about the EntityID.

RUNDOWN

MR. FEENY

COVER GIRL

PROPS

HEAD CHEESE

SUBS

OOPS!

LAYER CAKE

ID THEFT

CREATIONISM

GETTIN' SOME

MORE...

Property value GET’s.….
• After all, we said “the Piece of Information level”.
• getNumb(EntityID, Property).

– Implies most recently assigned value of that Property.
– One for each data type subtable (getFlag, getDate, getNote, etc.).

• Examples:
– HisCommission = getNumb(SalesRepID : ‘COMMISSION’);
– HisCarModel = getNote(SalesRepID : ‘VEHICLE.MODEL’);
– HisGPSBrand = getNote(SalesRepID : ‘VEHICLE.GPS.MFG’);

• Violations of ENTPROP structures spawn an Error entity.
– Contains info about what went wrong.
– GET function will imply the default value of the data type (0 for

numeric, blank for alpha, *LOVAL for date, etc.

• Special variants for Metadata items.
– getClass, getLegacyN, getStatus, etc.

RUNDOWN

MR. FEENY

COVER GIRL

PROPS

HEAD CHEESE

SUBS

OOPS!

LAYER CAKE

ID THEFT

CREATIONISM

GETTIN' SOME

MORE...

Property value PUT’s….
• putNumb(EntityID, Property, NewValue).

– Adds a row to the associated Property Value subtable with the
EntityID, Property nickname, the new Value and all stamps.

– One for each data type subtable (putFlag, putDate, putNote, etc.).
– Implies a Boolean based on success: True = successful.
– Immediately available for GET functions.

• Examples:
– if putNumb(SalesRepID : ‘COMMISSION’, 6.25); // or standalone
– ErrorText = ‘No error…shockingly it worked.’;
– endif;

• Violations of ENTPROP structures spawn an Error entity.
– PUT function will imply a False.

• Special variants for Metadata items.
– putLegacyN, putStatus, putParentID, etc.

RUNDOWN

PUTTIN’ OUT

GOODIES

FLUX

IMAGINE

TROUBLE

ASK BOB

INSTALLER

SHOWTIME

HOT FUDGE

THANKS

BOTTOM

Statistical/Analysis…..
• Entity level aggregates.

– AVG, MIN, MAX, SUM, COUNT of a specified Property for all
children of specified Class.

• Property level aggregates.
– Operates on a specified Property of a single Entity.
– Straight average or weighted average over life or a time span.
– MIN, MAX, SUM, COUNT over life or a time span.

• Examples:
– AvgFleetYear = EntityAvg(CompanyID : ‘VEHICLE’ : ‘YEAR’);

• Average model year of the company’s fleet vehicles.

– HighestPrice = PropertyMax(ItemID : ‘UNITPRICE’);
• Highest the unit price ever was for the specified Item.

• Variants on all such functions to allow timestamp range
arguments (open & closed end).

• See the Tech Reference.

RUNDOWN

PUTTIN’ OUT

GOODIES…

FLUX

IMAGINE

TROUBLE

ASK BOB

INSTALLER

ON STAGE

HOT FUDGE

THANKS

BOTTOM

Stored procedures…..
• Prepackaged routines that produce result sets to be

consumed by RPG or SQL with an RS Locator (i7.1).
• Audit trail based:

– Snapshot shows of all current property values for a specified Entity.
– PropertyLife shows every value ever assigned to a Property for a

specified Entity.
– EntityLife shows initial creation plus every value every assigned to

any Property for a specified Entity.

• EntityList gathers up headers based on wild card or
positioning parameters on metadata items.

– Used by the 5250 based search window.

• Entity Group functions gather up entities of a specified
Class with Property values in a specified range.

• Dig in and play!

RUNDOWN

PUTTIN’ OUT

GOODIES..

FLUX

IMAGINE

TROUBLE

ASK BOB

INSTALLER

SHOWTIME

HOT FUDGE

THANKS

BOTTOM

Virtual methods…..
• How you can add your specific business rules to Inuendo.
• These are SQL user defined functions (written in RPG or

SQL) with an EntityID as the lone parameter, and
returning a value compatible with one of the Inuendo
standard data types.

• Function name can be used in the associated subtable
GET function instead of a Property name.

• Inuendo will pass the EntityID to the function and imply
the result instead of a database value.

• Example:
– Earned = getNumb(SalesRepID : ‘YTDSALES’) *

getNumb(SalesRepID : ‘COMMISSION’) / 100;
– YTDSALES is a Virtual Method, COMMISSION is a Property.

RUNDOWN

PUTTIN’ OUT

GOODIES.

FLUX

IMAGINE

TROUBLE

ASK BOB

INSTALLER

SHOWTIME

HOT FUDGE

THANKS

BOTTOM

Self defense mechanisms...
• Triggers automatically defined during installation to

enforce that all database inserts and updates are
performed with official Inuendo functions.

– Includes entity creation, metadata and property values.

• Deletes allowed only by using Inuendo supplied rollback.
– Or IBM i commitment control rollback.

• Attempted violations logged as Error entities.
– Includes the who, the when, the how, etc.

RUNDOWN

PUTTIN’ OUT

GOODIES

FLUX

IMAGINE

TROUBLE

ASK BOB

INSTALLER

SHOWTIME

HOT FUDGE

THANKS

BOTTOM

The API layer…now and then
Identity resolution functions

Time
Travel

Support

Entity creation functions
Property subtable GET functions
Property subtable PUT functions
Metadata GET functions
Metadata PUT functions
Statistical/Analytics functions
Stored Procedures:
• Entity snapshots
• Entity groups
• Audit trail history
Virtual Methods

RUNDOWN

PUTTIN’ OUT

GOODIES

FLUX..

IMAGINE

TROUBLE

ASK BOB

INSTALLER

SHOWTIME

HOT FUDGE

THANKS

BOTTOM

Yes, time travel support !RUNDOWN

PUTTIN’ OUT

GOODIES

FLUX.

IMAGINE

TROUBLE

ASK BOB

INSTALLER

SHOWTIME

HOT FUDGE

THANKS

BOTTOM

How the DeLorean works….
• All functions and stored procedures accept an optional

Moment parameter.
– Identity resolution is predicated on whether the Entity existed at the

specified Moment.
– Property GET functions imply the value that was in effect at the

specified Moment.
– Stored Procedures reflect a combination of both the above.

• If Moment not specified, the system time is assumed.
• A Session Moment can be set via *CMD (SETSSNMOM).

– Takes precedence over the system time.
– Freezes the session at that Moment until reset (CLRSSNMOM).
– Prevents any outputs or updates to Inuendo tables.
– Honored by ALL Inuendo functions & stored procedures.

• We’ll see it in action during demo !

RUNDOWN

PUTTIN’ OUT

GOODIES

FLUX

IMAGINE

TROUBLE

ASK BOB

INSTALLER

SHOWTIME

HOT FUDGE

THANKS

BOTTOM

YOUR imagination…..…
• Visualizing the hierarchy of your business objects is key.

– Inuendo has been described as “Sixth Normal Form meets Object
Oriented Design and has a virtual baby”.

• Which classes should be connected via ParentID and
which should be connected via Link Properties?

• If a POI has a limited set of possibilities, you should
consider making it a Class.

• If a collection of POI’s should be consistently structured,
you should consider making it a Class.

• Remember, you have only one Legacy identifier per Entity.
– Otherwise your structure is not optimal.

• You can add Classes and Properties on the fly!
• Strategically consistent naming.
• Live demo.

RUNDOWN

PUTTIN’ OUT

GOODIES

FLUX

IMAGINE

TROUBLE

ASK BOB

INSTALLER

SHOWTIME

HOT FUDGE

THANKS

BOTTOM

Open Sesame…
…uh, Open Saskatchewan

The trouble with
opening up

The trouble...
• It’s not so much trouble as it is due process.
• There are many things to consider:

– Your target user community.
– Their specific needs.
– The systems they run.
– Whether they are potential producers or just consumers.
– How YOU will continue to evolve your creation.
– A distribution network.
– Last but not least, how YOU will benefit from your efforts.

• It’s all in the lifecycle.

RUNDOWN

PUTTIN’ OUT

GOODIES

FLUX

IMAGINE

TROUBLE

ASK BOB

INSTALLER

SHOWTIME

HOT FUDGE

THANKS

BOTTOM

Simplified lifecycle

Schmozzle on your
development box.

*SAVF with installer. Commit to code
repository.

*SAVF with installer.Code & Data libraries.Pull request from
code repository
(user branch).

“B” is for Build…..
• One of the hardest things you’ll ever do.
• Convert source to ASCII stream files in IFS.

– Recommend folders for each of QCLSRC, QCPYSRC, etc.
– This supports version control on GitHub or other networks.
– Upload of source performed via Web page wizard.

• Organize EBCDIC source for target system.
– Standard file names (QRPGLESRC, QSRVSRC, etc.)

• Create an installer CL (and associated *CMD).
– Verify release compatibility.
– Restore all source, compile all objects.
– Supporting objects (*JOBD, *SRVPGM, *BNDDIR, *MENU, etc.).
– Set up infrastructure (*SBSD, *JOBQ, *JOBD, *USRPRF, etc.).
– Perform one-time data initializations.

• Package it all in a *SAVF.

RUNDOWN

PUTTIN’ OUT

GOODIES

FLUX

IMAGINE

TROUBLE

ASK BOB

INSTALLER

SHOWTIME

HOT FUDGE

THANKS

BOTTOM

“I” is for Install....
• Usually requires a RSTLIB or RSTOBJ by the user.

– Recommend RSTLIB containing *SAVF, *CMD and CPP.
– *SAVF contains everything the *CMD needs for installation.
– Yes, that means a *SAVF within a *SAVF.
– This is how your Build should package it.
– See INSINUDB command.

• Run the installation command.
– Recommend *SECOFR authority.
– Recommend prompt for NEW target library names.

• User signs off, back on and should be ready to roll.
• Perhaps suggest mods to QSTRUPPGM.

– Hopefully you’ve provided an install guide in PDF. 

RUNDOWN

PUTTIN’ OUT

GOODIES

FLUX

IMAGINE

TROUBLE

ASK BOB

INSTALLER

SHOWTIME

HOT FUDGE

THANKS

BOTTOM

“P” is for Promote…..
• GitHub is a great place to host a repository.

– There are others. BitBucket, SourceForge, BeanStalk, etc.
– Each has their own little internal social network.

• Twitter used by many IBM i open source enthusiasts.
– Use #IBMi, #IBMiOSS when posting. Follow #COMMON.

• LinkedIn groups will get some traffic, less than Twitter.
– “Inuendo – Data’s New Direction”.
– “IBM i OSS”, “IBM i Professionals”.

• If attending COMMON, participate in OSS Round Table.
– Jesse Gorzinski is IBM’s OSS contact for i platform.
– Aaron Bartell, Liam Allen are among champions.

• Speak at user groups or regional events, like I am. 
– A lot of fun and great networking.

RUNDOWN

PUTTIN’ OUT

GOODIES

FLUX

IMAGINE

TROUBLE

ASK BOB

INSTALLER

SHOWTIME

HOT FUDGE

THANKS

BOTTOM

“HF” is for Have Fun.…
• The software world is not dominated by crusty old

vendors and lifers anymore.
• Getting involved in the Open Source community can re-

energize your career.
– Encourages and assists with skills building.
– Inspires creativity.
– Creates healthy competition in the software space.
– Watch and Follow active projects and authors.

• Start with IBM i, but consider branching out.
– Linux, Windows, Apple & Google communities are all rich with

open source utilities and opportunities.

• Make going to work fun again.
– Let continuous improvement become your corporate culture.
– GEMKO can assist and coach you.

RUNDOWN

PUTTIN’ OUT

GOODIES

FLUX

IMAGINE

TROUBLE

ASK BOB

INSTALLER

SHOWTIME

HOT FUDGE

THANKS

BOTTOM

Thank you for attending !
cburns@gemko.com
cburns@inuendo.us

Christopher F. Burns, Sr. (profile)
Inuendo – Data’s New Direction (group)

@InuendoData
#Inuendo #IBMi #IBMiOSS

cfburns (profile)
RPTMOD, Inuendo (repositories)

http://gemko.com
http://inuendo.us

© 2017 GEMKO Information Group, LLC

RUNDOWN

PUTTIN’ OUT

GOODIES

FLUX

IMAGINE

TROUBLE

ASK BOB

INSTALLER

SHOWTIME

HOT FUDGE

THANKS

BOTTOM

